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FOREWORD

This document is a technical summary of the progress made since
January 28, 1967, by the Auburn University Electrical Engineering
Department toward fulfillment of phase B of contract No., NAS8-11274,
This contract was awarded to Engineering Experiment Station, Auburn,
Alabama, May 28, 1964, and was extended September 28, 1966 by the
George C. Marshall Space Flight Center, National Aeronautics and

Space Administration, Huntsville, Alabama.
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SUMMARY

Three distinct methods for simulating a hybrid control system
are described in this report. The attitude control system of the
Saturn V booster stage was used throughout to illustrate the appli-
cability of these simulation methods. The first simulation pro-
cedure uses only analog components with the exception of two sample-
and-hold elements. The second method uses both analog and digital
devices. The analog computer is used to simulate the continuous-
time portion of the system and the digital portion of the system
is simulated by a special purpose digital device. Finally, the
system is simulated wholly on a digital computer using discrete-~time
techniques. Each of the three techniques discussed above is shown
to result in the development of an accurate simulation for the

system model under consideration,
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I. INTRODUCTION

In order to design or evaluate the design of a control system,
the engineer is almost always concerned with the system's behavior
to a specified set of initial conditions or inputs. The purpose
of this treatise is to present three different similation techniques
which can be used to obtain the time response of a hybrid system
to any set of allowable 1nitial conditions. These three techniques
can also be used to obtain the response of a hybrid system to any
type input provided the input is passed through a zero-order hold.

The term "hybrid system” is used here to denote a system in which
both continuous-time and discrete-time signals appear.

The hybrid system to be simulated is the Saturn V S1-C thrust
vector control system (attitude control system). The differential
equations which model the vehicle dynamics during the flight contain
some coefficients that vary slowly with time. Since the solution of
the given set of differential equations is to be investigated over a
relatively short period of time only, the time varying coefficients
in these equations will be assumed constant. These differential equations
with constant coefficients are used to perform stability and time-
domain studies, i.e., the simulation techniques developed in this thesis
are applicable for the analysis of stationary linear systems.

The Saturn V S1-C thrust vector control system, which is used



to demonstrate the proposed simulation techniques, is described in

Chapter I1. Specifically, “he differential equations which characterize
the vehicle, a functional description of the control system, and an
analysis of control system stabilit; is presented in this chapter.

In Chapter II1I, a description of hybrid simulation techniques is

given and a hybrid simulation development is presented for the Saturn V
S1-C system described in Chapter II. Results obtained from this simulation
are given and discussed. A method fur simulating a hybrid system

wholly on a digital computer is developed in Chapter IV. This method

is applied to the example system and the results which were obtained

from the simulation are discussed.



II. DESCRIPTION OF THE PROBLEM

The following set of equations characterize the Saturn V S1-C

vehicle. The symbols are identified in the List of Symbols.

Controller dynamics:

B+ (olel + 20262)3 + (01?4 4clr2ule? + w2?)3 +

(20202012 + 2zlwlw2?)é  + wllw2?p = mlszZBC (11-1)
Moment equation:

4
; = «C1¢ - 3; rE_ES&, Y!I(X,) + F Y. (xa) _
' y= /7 its — Yig) |y
i=1 1 L

XX XX
(.525 sp + 1E_ )é-(_}_ﬁks +c2>s (11-2)
L, Ly I,

Bending mode equations:

X . R'Y, (X SpY. (Xg) - IgY! .
”i+251“1”i+w2ﬂi=———@—1() B+<El(6) Ei(xe)>5
My Mg
i=1,4 (11-3)
Attitude error equation
4p = ¢ + ;ﬁ Yy (Xping (11-4)
i=1
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The variable ¢, represents the vehicle attitude error as measured
by an onboard instrument unit and is the only information available
for use in controlling the vehicle. 1In fact ¢p is available only
every T seconds; therefore, the system is inherently a sampled-data
control system. Further, in the above equations, B denotes the
control engine gimbal angle and is the only controllable quantity,

The variable 8 is related to the commanded engine gimbal angle, 8.,
by equation (II-1), This system can be represented as shown in
Figure 1. An algebraic computatior of the G(s) shown in Figure

1 is given in Appendix A.

Without compensation, the vehicle is unstable throughout most
of the first stage flight. This instability results because of the
(52 + Cl) term whick appears as a factor of the denominator of

G(s) [see Appendix A], Since C, is negative throughout most of

the flight, this means that the roots of this factor are located at

5

s; = - ¢l (11-5)
%

Since ¢_ is the vehicle attitude error, it is desirable to

D

maintain this variable as near zero as possible., Because of the
aforementioned inherent instability, it is manditory that some type

of compensating device be included in the system, Since ¢p is avail-

able as a sampled signal, it is reasonsble to consider the use of a
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digital device for compensating the system.

The closed-loop system with a digital compensator whose transfer
functic . is D(z), is shown in Figure 2. The zero-order hold is
included to convert the output of the digital device to a continuous=-

time signal., The transfer function of the zero-order hold is

H(s) = L1 - exp(-Ts) (11-7)

s

where T is the sampling period. The open loop transfer function of
the continuous part of the system is GH(s). The Nyquist diagram for
the continuous part of the sampled-data system can be generated by

using [1 ]

GH*(s) = GH(z)|= % Y GH(s + Jnug) (11-8)

n: - OO
z = exp (sT)

Since GH(s) is low pass with respect to the sampling frequency %.’

it is usually adequate to approximate equation (II-8) by the
first few terms of the infinite series.

A digital computer program for the calculation of the Nyquist
diagram for the incompensated system using eleven terms of the
infinite summation of equation (II-8) is given in Appendix B, The
Nyquist diagram for the uncompensated system at 40 seconds of flight
is shown in Figure 3,

If a pole of GH(s) is in the right-half s-plane, then that
pole will be mapped outside of the unit circle in the z-plane

by the z-transformation. Now in order for a closed-loop
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system to be stable, it is necessary that all roots of the charac-
teristics equation lie within the unit circle in the z-plane.
The following statement of the Nyquist Criterion can be used
to test for the location of the number of roots, Z, of the charac-

teristic equation, [ 1 + GH(z)] =[1 + GH*(s)[] = O which are external

to the z-plane unit circle. 1 ] s =<% In(z)
Let N = number of encirclements of (0 db, 180°) point.
Z = number of zeroes of [ 1 + GH*(s)|] external to the unit
circle in the z-plane. s = %-ln(z)

P = number of poles of fi1+ GH*(s)] external to the
unit circle. s =1 1n(z)
Then: N =2Z - P, (11-9)
The system represented by the Nyquist diagram of Figure 3 is
unstable since N = 1, Since, for a closed-loop system, to be

stable, Z must be zero, then
N = -P. (II-10)

For the system under consideration P = 1; therefore, N = -1 is
necessary in order to achieve stability.
It can be shown that the following digital compensation function

stabilizes the proposed closed-loop system, [ 5 ]

L 23 22,3822 + 1.886z - 497576

3 2
D(z) = 0.4 | o= 2.5632% + 2,447042 - 877786 J (11-11)
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A digital computer program which incorporates the digital compensation
function given by equation (II-11) in the calculation of the Nyquist
diagram is given in Appendix C. The compensated Nyquist diagram,
using the D(z) given by equation (II-11) and the system dynamics at

40 seconds of flight, is shown in Figure 4. This Nyquist diagram
verifies that the closed-loop system is stable, since N = -1,

After a digital compensation function has been proposed, it is
necessary to ascertain the time-domain behavior of the resulting
system. The next two chapters contain three different approaches to
the problem of obtaining a hybrid system's time-domain response to

a given set of initial conditions and (or) inputs.



ITI, ANALOG STUDIES

In this chapter, the problem of hybrid system simulation using
analog computer techniques is considered. The system to be simulated
is shown in Figure 2, The continuous part of the system, repre-
sented by G(s), can be simulated by programming equations (II-1)
through (II-4) on the analog computer. The digital portion of the
system, D(z), can be simulated by (a) using a continuous-time transfer
function in conjunction with two sample and hold elements or,

(b) by using a special purpose digital device to realize D(z).

Two factors which must be considered in preparing an analog
simulation are (1) time-scale and (2) amplitude-scale. The time~
scale problem is directly related to the type of recording equipment
to be used in recording results. If the system's operating frequencies
lie outside the range of the recording equipment, then the system
must be time-scaled, Since the highest frequency of interest in
the system of Figure 2 is about 5 hertz, rne problem of time-
scaling does not arise.

Amplitude-scale factors are equally important. The normal
operating range of many computers is + 100 volts. The scales for

variables in an analog simulation should be chosen such that mid-

11
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range voltage levels are attained throughout the computer during
normal operation. In any case, the signal-to-noise ratio of the
problem variables should be maximized.

The problem variables in an analog simulation are related to
physical system variables by a conversion constant, i.e,, multipli~
cation of each of the problem variables by the appropriate constant
changes the units of the problem variables from volts to the units
of the physical variable., As an example, suppose that the output
of an amplifier is proportional to the physical variable, ¢, and
suppose that the constant of proportionality is 400 volts/radian,
Thus when the analog variable measures 40 volts, this corresponds
to a system variable, ¢ = 0,1 radians. Normally the output of
this amplifier is written as 400 ¢ on the wiring diagram,

In the simulation of a system, cne often knows the maximum
magnitude of some of the variables, However, it is usually necessary
to estimate the maximum magnitude of many of the system variables
in order to develop a satisfactory simulation for the system. Consider
the following illustration of these ideas. Equation (II-3) can be
written as

. \
ny + ZCiwini + w

PUP Klie + K,, 8 (I11-1)

2i
It is known that B is physically limited to 0.l radians. If a
step input of B = C.l radians is assumed for (III-1), it turns out

that the maxiinum value of n; is about 1.0 meter. Consequently a
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scale factor of 100 volts/meter was chosen for each of the Ny
i=1, 2, 3, 4. In order to satisfactorily amplitude-scale (II-1),
the maximum magnitudes of ny and Hi must be approximated. The

maximum magnitudes of these variables can be approximated by [2]

n.(max) = w.n,(max) = w,
i i'i i (111-2)
H.(max) = w.a.(max) = w2
i i1 i
Equation (II-1) can be written as
“ . )
Yli = KliB + KZi B - ZCiwiﬂi - U)ini . (111-3)
then, {III-3) can be written as
2 g2y o P 2 , _ 2 -
u,i(ni/wi) = KB+ KyuB - 20507(ng/0g) - wf ny (111-4)
Similarly since B(max) = 0.1 radiar, the derivative terms can be
approximated by
£ (max) = w2f(max) = 0.1lw2
.- . (111-5)
5 (max) = w2f(max) = O.lwz2
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Equation (I1I-4) can now be written as

(Hi/wi2) =f Kli(O.l)/win(B/O.l) +-[K21(0.1w22)/wi%](é/O.lmZz)

-2 (éi/wi) -ny (111-6)

Suppose (III-6) is multiplied by E, where E denotes the maximum range

of the machine amplifiers in volts.

(E n,/ul) = [Kli(o.l)/wi:}BE/O.l) +-[KZi(o.lmzz)/wif](ég/o.lwzz)

204 (n,E/wg) - Eng (111-7)

. o em
E ﬂi/(ﬂi = ﬁim
Eng =ng" (111-8)

E8/0.102° = g™
EB/0.1 = g®

where the superscript m denotes a machine variable whose units are

volts. Thus (III-7) may be written

.. 2 2 2"' . .
n? = rxli(O.l)/w%]Bm +-[K21(0.1w2 )/wiiBm - ZCin? - n? (I11-9)

I
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Obviously the scale factors relating the magnitude of the physical
variables to the magnitude of the machine variables are E/w% for

;i: E/0.1 for B, etc, Note that equation (III-6) is arranged so

that each varfable is divided by its maximum assumed value, It is
desired that when each of these ratios equal unity, the corresponding
machine variable will equal 100 volts. The analog simulation of

(I1I-6) is given in Figure 5, where

al = Kli(—ool)/ﬂ%
PR Kzi(O.leZ)/wi

(x6c:7= W.
t (111-10)
u8 = ZCi

The analog simulation of equations (II-1) thru (II-4) is
shown in Figure 6., Now that a simulation for the continuous
portion of the system has been developed, let us next consider the
problem of simulating the digital subsystem,

The digital portion of the system, D(z), can be simulated using
a continuous approximation for D(z) in conjunction with two sample-
hold devices. [1] Consider the realization of D(z) given in Figure

7, where H(s) is given by

(s) = 1 - exp(-Ts)

23
o

(I11-11)
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The problem is to determine that function D(s) with the property that
2 {}l(s)D(S)] = D(z) (111-12)

Since H(s) is a zero-order hold, (III-12) becomes

D(z) = (1 - z—l)g [- D(s) J (11I-13)

S

The solution of (III-13) for D(s)/s is

D(s) - }'1!-_2 D(z)] X (I1I-14)

s z-1

The result of substituting equation (II-11) into (III-14) and perfor-

ming a partial fraction expansion for the right hand side of (II1-14)

is

D'.s) 0.44-1 ) 274262 3.002 _  38.9559z  39.21352z }
s U1 (2-.82)2 (z-.82) (2z-.74)

(I11-15)

By utilization of a z-transform table, the inverse operation indicated
in (ITII-15) may be accomplished. Then (III-13) may be solved to
give the desired relation for D(s). The result of performing the

operations indicated is
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453.842 284.748 295.184
D(s) = 0.4]1.00 - ot - (I11-16)
(s+4.961) s+4.961) (s+7.582)
or in combined form,
D(s) = 0.4[ s3 + 7.01s% 4 272.67s + 137.56 ] (111-17)
s3 4+ 17.455%2 + 99.31s + 185.29

The function given by (III-17) was implemented on the analog
computer. The step response of D(s),given by (III-17) with the

0.4 gain term omitted, is shown in Figure 8. The step response

of D (2), given by (II-11) with the 0.4 gain term omitted, is shown
in Figure 9. The step response of Dfz) was obtained by recursively
solving the difference equations which describe D(z) on a digital
computer. The digital computer program used is given in Appendix
D. It should be noted that the step response of D(s) very closely
follows the step response of D(z) as expected. Theoretically,
there should be no difference between these two responses at the
sampling instants because a zero-order hold reconstructes the step
input signal precisely. However, the differences which do arise
are due to imperfections in the analog equipment. The analog computer
realization of thz D(s) shown in Figure 7 and described by (III-17)

except for the 0.4 gain term is shown in Figure 10. In Figure 10,
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o = 7.01/10
o = 272.,67/500
o = 137,56/200
(111-18)
o = 17,45/50
o = 99,307/100

o 185,29/200

The 0.4 gain term of (III-17) is included in potentiometer number
40 of Figure 6 when the D(s) in conjunction with the two sampler-
hold devices is used to simulate D(z), The potentiometer settings
of Figure 6 are listed in Appendix H,

Stability studies were performed for the hybrid system using
the simulation shown in Figure 6 with D(z) realized by the methods
described above, The gain margins checked with the values calculated
from the Nyquist diagram shown in Figure 4.

The response of the system at 40 seconds of flight to a 2.0
degree initial condition on ¢ using the D(z) as shown in Figure
7 is given in Figure 11, It was also noted that the response
of the given system to a 2,0 degree initial condition on ¢ using
only the D(s), with the sampler-hold devices omitted was almost
identical to the response shown in Figure 11,

Stability studies were performed on the closed loop system
shown in Figure 6 using a special purpose digital device instead
of the continuous approximation developea earlier in this chapter.

ihe gain margins checked with the vaiues calculated from the Nyquist
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diagram siow "sure 4, The system response to a 2.0 degree
initial condition on ¢ is shown in Figure 12, The difference between
the system response shown in Figure 11 and the system response
shown in Figure 12 is due to the introdv tion of quantization in
the analog-to-digital converter ana to the truncation wi :hin the
digital device, Another potentiul source of error arose in connection
with the analog-to-digital interfagc. The analog signal had to be
scaled down by a factor of 25 in order to insure that input voltage
levels did not exceed the maximum dynamic range of the analog-to-
digital converter. This requirement may have resulted in a poorer

signal tc¢ noise ratio, and hence caused some system error. [3 ]




1012 14 6"
Time ( sec.)
40.0 sec. Flight Time

Figure 12, Analcg Response of the TeVeCoe System to an Initial
Condition on n Using a Special-Purpose Ligital
Device
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Iv. DIGITAL STUDIES

In this chapter, a method will be developed for the digital simu-
lation of a hybrid control system. One method of obtaining a model for
a hybrid system is to use discrete-time techniques. Discrete-time
techniques are readily applicable for system simulation on a digital
computer.

The linear differential equations which describe the Saturn V
S1-C at a particular time of flight may be written in the form

of first—order differential equations as shown below:

x(t) = A x(t) + b 8, (1), (1v-1)

op(t) = clx(t) | (1v-2)
where B.(t) represents commanded engine angle and ¢p(t) represents
the vehicle attitude error as measured at the instrument unit.

Consider the equations of motion given by (II-1) thru (II-4)
and the D(z) given by (II-11). A signal flow graph for the system
represented by these equations is shown in Figure 13. The a, b
and ¢ matrices of (IV-1) and (IV-2) may be developed for the continuous
part of the system shown in Figure 13, The elements of these

matrices are given in Appendix E.

28
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The solution of equation (IV-1) is: [4 ]

t
x(t) = ot - tg) x(ty) + [ ot ~ )b B (x)dr, (1v-3)
to

where ¢(t - t5) is a square matrix given by:

o(t - t,) = exp [A(t - ty)] = y AT(t - to)”

- (1V-4)
k=0 k.

The matrix ¢(t - tO) is called the state transition matrix since
it maps an initial statelg(to) into the state x(t) at any later time
t > tg.

Now, the output of the system, ¢p(t), is measured only every
T seconds, where T is the system sampling period, Further, since a
digital controller is used, the engine command single, B.(t), can
change only every T seconds and must remain constant between
sampling instants, Using this information, the solution of the
state equations can be discretized in the following manner, A
property of the state transition matrix is:

T T

/\ (T - 1)dt = /ﬂ d(t)dr (Iv=5)
=0 =0

Proof: Let o=T - 1, then do = -dt and

T 0 T
[ o(T ~ 1)dT = [ (o) (-do) = f@(o)dc (Iv-6)

T= = U=O
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Now, suppose that the system state x (kT) and BC(kT) are known and it
is desired to determine the state, x [(k + 1)T]. From (IV-3) it is
evident that
(k+1)T
x[(k + 1)T] = o[ (k + 1)T - (kT)] x(KT) +f o[ (k + 1)T -1]b8 (1)dt,

T=kT (Iv-7)

Note that B.(1) = Bc(kT) for kT < 1 < (It + 1)T since BC(T) is the
output of a zero-order hold. Thus (IV-7) becomes
(k+1)T
x[(k + 1)T] = o(T) x(kT) + [f ol(k + 1T -T]dt] bB.(kT).  (IV-8)

7=kT

Using the property that

t +A

/1 f(1)dr =4/$ f(r - A)dr, (Iv-9)

=0 e=A

and that

4>(t1 + t2) = <l>(t1) o(ty) , (1v-10)
we can write

(k+1)T (k+1)T T

f M(k+1)T -1ldt = Q(T)f ® :r-('r-kT)]d'r = ¢(T)/ ¢ (1 )t

T=kT r=kT T =0

- f (T - 1)dr (1V-11)

T
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Then from (IV~5) and (IV-11), (IV-8) can be expressed as

T
x [(k + 1)T J= ¢(T) x(KT) + U CI)(T)dT:, b B, (kT). (1v-12)

=0
The matrix ¢(T) and the matrix /T #(1)dTt are constant matrices
=0
which need he evaluated only once, The Taylor Series expan-

sion of these matrix functions can be used to obtain numerical results

for the matrix coefficients. The expansions are:

252 3.3
¢(T) = I + AT + A_T+ﬂ+,,,, (1v-13)
2! 3!
and ,
? 2 273 3mb :
[ob(T) dt = IT + AT 4+ ATT" 4 ATT" 4 |, | (1v-14)
0 2! 3! 4!

T
It was found for the system under consideration that ¢(T) andl( ¢(r)dr

can be accurately computed by using 25 terms of (IV-13) ~nd (IV-14)
T

respectively. Let A; = ¢(T), and by = E/p¢(r)dT_§]. Therefore from
0

(Iy-12) and (IV-2)

xk + DT = Ay x(kT) + by B (kT) (IV-15)

sp(kT) = cTx(kT) (IV-16)
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Equations (IV-15) and (IV-16) represent the discretized system dynamics.
The closed loop system can now be represented by the block diagram
shown in Figure 14,

The digital compensation function of (II-11) may be written as

.3 2 .
Bo(2 - 2.563z° + 2.447042 - .877786
D(2) = __Q(_) =GCI‘ z z z J , (1V-17)
¢p(2) . 23- 2,38z + 1.886z - .497576
where
GC = 0.4
Rewriting (IV-17) ,
3023 + alz2 + azz + aj
D(z) = GC[ ] (1v-18)
z3 4+ b122 + byZz + by

where ag = 1.0, a; = -2.563, a; = 2.44704, a3 =~ 877786,

b, ==2.38, b, = 1.886, and b, = -.497576.

3
This transfer function represents a system which is characterized by
difference equations. One set of first-order difference equations

whose transfer function is (IV-18) is:




3. kT)

3

DISCRETIZED

¢p(kT)

SYSTEM
DYNAMICS

DIGITAL

COMPENSATOR
D(z)

Figure 1li. Flock Tiagram of Discretized System
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Vo[ (k + 1)T] = -byVy(KT) - byVy(KT) + Op (KT} - GC -byv, (KT)

VZ[(k + 1)T] Vl(kT) (IV-19)

V3l (k + 1)T] = V; (kT)

Be (kT) = (ay

+ (a3 - by * ay) V4(kT; + op(kT) * GC - ag (1v-20)

b1 . ao) Vl(kT) + (a2 - b, ao) V?(kT)

Equaticns (IV-19) can be mechanized as shown by Figure 15.

The calculation of the response of the syste: to a given set of
initial condition is accomplished as follows: vehicle initial states,
x(0), and compensator initial states, V(0), are chosen. Then ¢p(0)
and £.(0) may be calculated by (IV-7) and (IV-20) respectively.

Next, (IV-15) and (IV-19) are used to calculate x(T) and V(T). Then
¢p(T) and £.(T) are computed. The process is repeated for all kT of
interest.

The digital computer program given in Appendix F was use to
implement the above steps. A time response of the system under consi-
deration using the vehicle data at 40 seconds of flight is given in
Figure 16.

The approach discussed above is particularly useful in studying
the time domain behavior of the attitude control system when consi-
dering the effects of quantization in the implementation of D(z).

The digital computer subroutine given in Appendix G is programmed

to simulate the quantization of the actual digital device used in




Pp (k) -GCJ

9¢

Figure 15, A FKealization of D(z)
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Chapter III for D(z).[3] The subroutine is programmed for a maximum
of 15 degrees input to the D(z) and there exists 255 discrete levels
in the analog to digital converter, The truncation of signals and
coefficient quantization is programmed in exactly the same manner as
they actually occur in the digital compensation used in Chapter IIIL
used to generate the system response shown in Figure 12, The system
response to a 2,0 degree initial condition on ¢ calculated
using the digita: computer simulation modified to include quantization
is shown in Figure 17, Note that the response shown in Figur=
17 is in almost complete agreement with the response shown in Figure
12 which was ohtained by using the special purpose digital device

in conjunction with the analog simulation.



jaea 5 it T T R S ST
I: sassas: pag snate ehis BTG ¥ =
it - - : H ved
~ [ e +
SGne j§24 spent e 3
pes
: aes a: :
e o : [- )
Sy 1221 T
e st serny IS SONAS 2usOE SRR Suoas
bl thw 1 4
T + i
[ias ized shd e axs
+ : i
ve e : + = 104 T et sddayunnay angaa
180 o 4 oy [HE0DESE o0t e
e : Retint e =
32 peasis: 23 tasannadat § i1 H
-+ ] - et t - fae
; oo 7 T TaSEs o 0
: 7 ; 25 : —
H pig b,
t esns!
+ + T
Tty
Saane: £azeons: 25
3 ~ 1 3gnag Saner & e 1 bas
+ RS P w e
RSSE JRRRG SS90 S84 " [P SR SRS By + e
jos fhess gasss ; T
[es penss : Tl j§ sage <
3 + e i it ' T =+ -
T . 1.
bt oy s 7 ISSS! snas <
o jge 2 7 2 Y
pod va e gedts pevagos: : -
+ I S p—
Ses : ast T H eaasa:
i+t +4 +- + +
e 5 T Tt s 233 F
agye 53 3580 sewda sbess EhTt +
Hhk
ipensas seaon
(11 T : v & 1 e r4atid et
T : Y 1 3
1 Y e s 0e el 1 T e
T e : T H
1 I S N1 T WS e 1 S s
L ++ y 4 o 1 h senan
3 + L o > + .H.“nw2
+ 4 -
3 < - yaakes: sie & T s o g -
3 b g 7 1 -+ ng
y + P + : 1 + P Saoes
44 - e SRETS Sy T T B s
- T - :
= F TS o 3
oes T BEANG SRSSY i1 PPOE Sy B saass
> : e + bd - g
= 55 oat 8 SrsesEes 338 Senes Speas sp=s = o =5
= ey seake sos : e = o3
T : : ou Dea e b 173 Iope = et = & =
+ T + 13 + i + )8 &1 Rl sasew
] e PR + 3 spas . N [ LI Iaees
JRSES fupes sou . < : 81 g inssal @ ]
¥ e e L} e IHWH. -
4 e (999 2PYT tavee 94 T I e
SPPUS SSUSS S0l pog ot SOy SR SRUDS SOUSY BOE SOSFPIRRIE FED1 o gt - 53
I . IS000 SRENY WEEs SERED SPINS SOWIE SESgE oo s
Tawey pos s
o e ESS seven T 2 o
Sesphuet sgaadape [ErSoaghs sasop s 51 pepetppas sasy: el sasss
'e 201 e 1 hivt & 3 I . - badiS soudt bud T -
i oo T e (R
ingas oy o SRR 3 Rass s s bas S tiea:
Setet ebol ihgss T s '8 pangy s EeTE o T 1
f s sezee
SEES Suwvs TEESe sy tas somae suw: SEe S22 30 sepagous 09 s : = s Evass
phdd dowpe ndd 7 T t 4L, tlaws biph SSoul T “ % eswsul
[o sagms Soppyptags seagy se B FITE $2404 Sgtus pqos sxal je sounn
=
or jzas soaae ” o3 rau: e = Tt )i 'gpynmmts sepmeopnas uses ma: w 3o
1S SRRy QUGS SRNNE STy s AR SODOE FRERE P + [ Suans
=] 352 Saet rersy Srant & P &, (oo peles SEPIpRitd [ssstocry: ol = i ceset
-+ . - -
o peowy o Sping Py spneat A Y RGNS pmwy we: T o A
nae bardihad fbad pa : e Sudy ‘oSG8 SHUul 59951 s < =5
T pon: poud vy ja suap,
z L SRII ATIRITTL ST - P e IS SPURS Snand
FS5S SRRSS SRS Sl Srohl Pty bouie soben Sodt S5 : =i

Time (sec)

Response of the T,V,C, System to an Initial Condition cn

¢D with Quantizaticn Included

Figure 17,



V., CONCLUSIONS

In this report, three distinct methods for simulating hybrid
control systems are described. The attitude control system of a
large space vehicle was used throughout to illustrate the applica-
bility of these simulation methods.

The first simulation procedure uses, with the exception of two
sample~and-hold elements, only analog components. The next method of
simulation uses both analog ana ligital devices. The continuous~time
portion of the system is simulated on an analog computer and the
digital portion of the system was simulated by a special purpose
digital device. Finally, the system was simulated on a digital
computer using discrete~time techniques.

Each of these three techniques provided almost identical time
responses. Further, each of these simulations was used to confirm
the stability margins established analytically in Chaptef II for
the system under consideration. The sources of possible error and
the limitations of each simulation method was outlined in each

section.
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From

APPENDIX A

AN ALGEBRAIC COMPUTATION OF ¢p)(s)/8_(s)

The Laplace Transformation of equations (II-1, 4) yields:

B w122’
Be (2 + 2Clwls + w12)(s? + 202u2s + w22)
4
[ i=1 XX
e =) (“—3—- cD]B
Tex XX
/ 2 2 1
My
' -,
+ (SEYi(XB) - IEYi(xB))SZ JB) i-= 1,4
4
¢D = ¢ + S? Y, (Xp)n
i=1

(A-3) we have:

1r

ﬁ;{ R'Yi(XB) + (SgY;(Xg) - IEYi(yB))SZJ 5

2
52 + Zgiwis + wj

43

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)
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From (A-4) we have

4
¢ = op - y ¥y (kp)ng (a-7)

i=1
The substitution of (A-6) into (A-7) yields:

4
0= op = ) YiGKpF8 (A-8)
i=1

The substitution of (A-8), and (A-6) into (A-2) yields:

4
Y, ()8 = ‘01[% - Z Y;(XD)FiB]

J

~1 &

S ¢D“

i=1 i=

4
_y’ "F fcg 1 F
Y. (Xg) + T Y;(Xg) | F4B

i=1 L Iy XX

7 RegS I k38
(e, Tro2 (k2 ‘%)JB (a-9)
I Tex Ixx

Simplifying, we obtain

<;,D[s2 + C1] = B{ >__. Y'i()(D)Fi [ s + 01]
-1

[

F2 '
{ T‘:j Y3 (Xg) + £ ¥4 (xs)]Fi (a-10)

XX
LaeS I
[ )Gz e)
IXX IXX IXX

i
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or

¢D Gl(s) = g Gz(s) .

From (A-1) we have

The substitution of (A-12) into (A-11) yields:

¢p G1(s) = G3(s) B, Go(s)

or,
¢D/BC = Gz(s) G3(5)/Gl(5) = G(s),
where:
G,(s) = s? + Cq
4
S ' 2
Gy(s) = ZJ Yy (Xp)F, [ s + ¢ ]
i=]

7 F2 ' F
) -Zcg —_ .

XX XX

(A-11)

(A-12)

(A-13)

(A-14)

(A-15)
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..K Q_C_S_S.E + EE_ < .le_F: - Cy )J (A-16)
IXX

G3(8) = w1Zw2?/(s? + 221018 + w1?)(s? + 202028 + w22) (A-17)



APPENDIX B

UNCOMPENSATED NYQUIST

COMPUTATION OF PHID/BETAC SAMPLED FREQUENCY RESPONSE

DIMENSION WB(4)oZETA(G)sGM(4)sYB(4)sYPB(4)sYPDI(4),
1 Ull4)s2(6)sA(4)9eB(4)
COMPLEX CMPLXsCEXP9sSsWSSoHOLITF oGCOMP sWP 9Z 9519 SUMAF
1 DENy ANUMSTOTAL 9SQsAF(4) gAD s AN+ SUMBAF 4 SUMDAF

10 FORMAT(3(5X+E1548))

11 FORMATI(4(8XsC18.8))

5¢C CONTINUE
READ(5910)C19C2,4FC
READ(5910)ASE sAK39RP
READ(5+11)ALCGIAIXXsAIESTIME
READ (5911 )WEB(1)s WB(2)9s WB(3)s «B(4)
READ(S5911)ZETA(Y1)s ZETA(2)y ZETA(3)s ZETA(4)
READ(S911)GM(1)s GM(2)s GM(3)y GMI(4)
READ(5411)YB(1)s YZ2(2)s YB(3)s YB(4)
READ(5511)YPB(l)s YFB(2)s YPB(3)s YPB(4)
READ(S 911V °PD(1)s YPD(2)s YPD(3)y YPD(4)
DO 9 I=1,+

9 WB(1jswB(1)%2.0%#341415927

33 FORMAT(1H1ys4Xs10HINPUT DATAs//)
AK3 = AK3%57,29578
PRINT 33
PRINT 109C19C29FC
PRINT 104ASEyAK3,RP
PRINT 11,ALCGsAIXXsAIE»TIME
FRINT 119 WB{1)s WB(2)s WB(3)» WB(&)
PRINT 11y ZETA(1)s ZETA(2)s ZETA(3)s Z2ETAl4)
PRINT 119 GM(1)e GM(2)s GM(3)s GM{4)
PRINT 11y YB{1l)s YB(2)s YB(3)s YBi&)
PRINT 11y YPB(1l)s YPB(2}s YPB(3)s YPBI(4)
FRINT 119 YPC(1)s YPDEt2)ys YPD(3)s YPDI(4)
ALPHA = (ALCG*ASE4ATE)/AIXX
GAMMA=AK3®ASE/ALIXX
BETA=FCRALCG/AIXX
DO 501 I=1+4
A(T1)=RP*YB(1)/GM({)
B(I)=(ASE*YB(I)~AIE*YPB(1))/GMI(1)
UL(1)=2+CH*ZETA(T)*WBI(T)

501 U2(1)=WEB (V%%
CALCULATE FREQUENCY RESPONSE
DEL = Qe2
XK = 1le0

66 FORMAT(iH1»4X930HFREQUENCY RESPONSE OUTPUT DATA /7))
PRINT 66
OMEG = 4005

47
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GO T0 4
77 DEL = DEL/2.0
OMEG = OMEG-DEL
4 TF =2 CMPLX( 060y 040)
TS= 0604
OMEGS = 2.0%3,1415927/TS
NTILT = §
NX = 2%NTILT+1
DO 24 J = 14 NX
XJd = =NTILT+J=-1
OMEG1 = OMEG+XJ#OMEGS
S = CMPLX(0e.0s OMEG1)
SQ=5S*%2
DO 502 I=1y4
50z AF(1)={A(1)+B(I)*5Q)/7(SQ+ULl(]1)*S+U2(1})
SUMAF=CMPLX(0e0+000)
SUMBAF2CMPLX{0e04040)
SUMDAF=CMPLX(0e0+040)
DO 503 I=1s4
SUMAF=YB(1)*#AF (1 )1+SUMAF
SUMBAF=YPB (1) *AF (1 )+SUMBAF
503 SUMDAF=YPD{1)*AF {])+SUMDAF
DEN=SQ+C1
ANUM=SUMDAF#(SQ+Cl)~C2-BETA#SUMBAF=FC#SUMAF/AIXX=
1 ALPHA#SQ-GAMMA
WSS= (34448 %82/ (SQ+2e%( 4434 )% (24048 ) %S4 (34,48)%%2)*%
1 (84405 )#%2/(SQ+2e* (0594 )% (84¢09)%S+(84,09)%%2)
HOL = {160 = CEXP{=TS:S¥)/S
TOTAL = =14/TS*HOL*WSS*ANUM/DEN
24 TF =TF + TOTAL
WR = SIN (TSHOMEG) /(140 + COS (TS*OMEG))
WP = CMPLX (0e0» WR)
ABSVAL = CABSI(TF)
DB = 20.0%ALOG10 (ABSVAL)
PHASE = 57.29578*%ATAN2(AIMAG(TF)s REAL(TF})
IF(PHASE) 20930431
30 PHASE = PHASE+36040
31 CONTINUE
IF {(XK=140) 32932939
39 CONTINUE
DELT1 s ABS (DEI.T=PHASE)
DALT1 = ABS (DALT=DB)
IF (DALT)=1Ca0! 44944077
44 1F (DELT1~1540) 329329777
777 IF (DELT1-35040) 77577932
32 DELT = PHASE
DALT = D8
XK = XK + 1.0
25 FORMAT(5X s6HOMEGAZF9e¢595X93HDB=F94395X96HPHASE=
1 F94394Xe2HW=F1046)
PRINT 25,0MEG,DB»PHASE sWR
EXIiT=8040

L R e



DEL = Q.2

OMEG = OMEG + DEL
55 IF (CMEG=EXIT) 44,7
7 CONTINUE

STOP

END
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APPENDIX C
COMPENSATED NYQUIST

C COMPUTATION OF PHID/BETAC SAMPLED FREQUENCY RESPONSE

DIMENSION WB(4)sZETA(4L)sGM(4)sYB(4)sYPB(4)sYPDI4),
1 UL{&4)sU2(4)sA(4)sBI(4)
COMPLEX CMPLXsCEXPsSsWSSsHOL s TFsGCOMP sWP 92351 9 SUMAF s
1 DENsANUMSTOTAL sSQs AF (4) s AD 9 AN ¢ SUMBAF s SUMDAF
10 FORMAT(3(5XsE1548))
11 FORMAT(4(5XsE15.8))
50 CONTINUE
- READ(59101C1eC24FC
READ(5+10)ASE »AK3sRP
READ(5911)ALCGsAIXXsAIE,TIME
. READ(S911)WB(1)s WB(2)s WB(3)s WB(4&)
READ(S911)ZETA(1)s ZETA(2)s ZETA(3)s ZETA(4)
READ(5+11)GM( 1)y GM(2)s GM(3)s GM(&)
READ(5+11)YB(1)s YBf2})s YB(3)s YR(G)
READ(5+11)YPB(1)s YPB(2)s YPR(3)y YPB(4&)
; READ(5511)YPD(1)s YPD(2)s YPD(3)s YPD(4)
DO 9 I=z1ls4
- 9 WB(I)=WB(I1)%#2.0%3,1415927
33 FORMAT(1H1+4Xs10HINPUT DATAy//)
AK3 = AK3#57,29578
PRINT 33
PRINT 109C1+C2sFC
: PRINT 109ASEsAK3,RP
{ PRINT 114ALCGSAIXXsAIESTIME
. PRINT 11s WB(1)s WBI{2)s WB(2)s WB(4)
PRINT 11s ZETA(l)s ZETA(2)s ZETA(3)s ZETA(4)
PRINT 119 GM({1)s GM(2)s GM(3)s GM{4)
PRINT 11y YB(1)s YB(2)s YB(3)s YB(4)
PRINT 11s YPB(1)s YPE(2)s YPB(2)y YPB(4)
PRINT 11y YPD(1)s YPD(2)s YPD(3)y YPD(4)
ALPHA = (ALCG*ASE+AIE)/AIXX
GAMMA=AK3®*ASE/AIXX
BETA=FC®#ALCG/AIXX
DO 501 I=1s4
AL1)=RP*YB(1)/GM(1)
B(I)=(ASE*YB(I)~ATEXYPB(I))/GM(1)
UL(1)=240%ZETA(I)*WB (1)
501 U2(1)=WB(1)%#*2
C CALCULATE FREQUENCY RESPONSE
DEL = 0e2
XK = 1e40
66 FORMAT(1H1s4Xs30HFREQUENCY RESPONSE OUTPUT DATA +//)
PRINT 66
§ OMEG = 4005
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502

503

24

30
31

51

GO TO 4

DEL = DCL/2.0

OMEG = OMEG~DEL

TF = CMPLX(0e0» CoQ)

TS= 004

OMEGS = 2.0%3.1415927/7S
NTILT=5

NX = 2%NTILT+1

DO 24 U = 1y NX

XJ = =NTILT+J-1

OMEG1 = OMEG+XI®OMEGS

S = CMPLX(0.0s OMEG1)
SQ=5%%2

DO 502 I=1s4
AF(TI)=(A(1)4B(],%SQ)/7(5Q+UL{TI%S+Y2(1))
SUMAF=CMPLX(0:09040)
SUMBAF=CMPLX(0e0+00)
SUMDAF aCMPLX(0e0s0.0)

DO 503 I=1s4
SUMAF=YB (1) ®AF (1)+SUMAF
SUMBAF=YPB(I)*AF(1)+SUMBAF
SUMDAF=YPD( 1) ®AF ([ )+SUMDAF
DEN=SQ+C1

ANUM=SUMDAF* (SQ+C1)-C2-BETA*SUMBAF -FC*SUMAF/AI XX~

1 ALPHA%®5Q-GAMMA

WSS=(34648)%%2/(SQ+2¢%¥ (4434 )% (244481 75+(34048)%%2 )%
{B4e09)RX2/(SQ+2e% 1 5F4 )% ({8400 )%S+(84.09)%%2)

HOL = (10 = CEXP(-TS%5))/S

TOTAL = ~14/TS*HOLXWSS*ANUM/DEN

TF =TF + TOTAL

WR SIN {(TS*®*OMEG) /(10 + COS (TS*OMEG))

WP = CMPLX (0.0s WR)

S1=CMPLX(0.0s0OMEG)

Z=CEXP({TS%S5])

GC = Qeb

AQ = 140

Al =-24563

A2 = 2444704

A3 =-4877786

Bl =-2438

B2 = 148860

B3 ==-4497576

AN = AQRZA%¥I+A]HZR¥2+A2%7+A3
AD = Z%#3+B1uZ7%#%24B2%72+83
TF = TF*AN/AD*GC

ABSVAL = CABSI(TF)

DB = 20+0*ALOG10 (ABSVAL)

PHASE = 57.29578*#ATAN2(AIMAG(TF)y REAL(TF))
IF (PHASE) 30430431

PHASE = PHASE+36040

CONTINUE

IF (XK=1e0) 32432439
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39 CONTINUE

DELT1 = ABS (DELT=PHASE)

DALT1 = ABS (DALT=DB)

IF (DALT1-=10e0) 44444477
44 IF (DELT1-1540) 324324777
777 IF (DELT1-35040) 7777432
32 DELT = PHASE

DALT = DB

XK 3 XK + 160
25 FORMAT(5X s6HOMEGA=F9¢595X93HDB=F94345X9s6HPHASE=

1 F9e394Xe2HW=F104.6)

PRINT 25+0OMEG+DBsPHASEsWR

EXIT=80.0

DEL = 0.2

OMEG = OMEG + DEL
55 IF(OMEG=EXIT) 49447

7 CONTINUE
STOP
END
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APPENDIX D

STEP RESPONSE OF THIRD=-ORDER D(Z)

DIZ) = AQ*Z#**¥34A1#7#%24A2%7+A3/ (2% %3+B1*2¥%2+B2 X2 457

DIMENSION XP(342)

DO 4 I=193
XP{Iel)=0.0
L=1

Ul=1.0

AQ = 140

Al =+2,563
A2 = 2444704
A3 ==4877786
Bl ==2438

B2 = 148860
b3 ==e497576
CONTINUE

XP(192)==B1l#XP(14+1)=B2*XP(241)~B3%XP(291)+UI
XP(2s2)=XP(1s1)

XP(352)=XP(241)
YP=(A1=A0*B1)*XP(1s1)+(A2=A0%B2)%#XP(2,1)

1 +(A3=A0%B3)*XP(3,1)+UI*AQ

DO 1 I=1+3
XP({Is1)=XP(Is2)
J=L=1

T=0e04%FLQAT(J)
PRINT 34YPsT

L=L+1
[F{L.LES1001)GO TO 2

» FORMAT(10XsTHOUTPUT=E154895X95HTIME=E1548)

STCOP
END
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APPENDIX E

ELEMENTS OF THE AsBs AND C MATRICES

A IS A 14 X 14 MATRIX
B IS A 14 X 1 MATRIX
C IS A 14 X 1 MATRIX

A(lsl)==2%2ETAL1*W1

Alle2)==W1lx®2

A(29s1)=140

A(392)=W]1%x2

A(393)=~2%2ETA2%#W2

Al394)==W2%%2

A{493)=1.0
A(592)=(ALCORASE+ATE ) #W2 %2 % (~W1#%2 ) /Al XX
A(593)=(ALCG*ASE+ATE ) #W2#%2%2 ,#ZETA2*W2/AT XX
A{594)=(ALCGHASE+ATE ) #W2#%2 % W2 % %2 /AIXX + W2%%2%
1 (=C2~AK3*ASE/AIXX)

A(596)==C1
AlSys 8)= ~(FC*(ALCG*YPB(1)+YB(1)})/AIXX
A(5+10)= ~(FC*(ALCG*YPB(2)+YB(2})))/AIXX
A(5912)= —(FC*(ALCG*YPB(3)+YB(3)))/AIXX
Al5914)= —(FC*(ALCG*YPB(4)4YB(4)})/AIXX
A(695)=1.0

A(702)=(ASE*YB(1)“AIE*YPB(I))*WZ**Z*WI**Z/GM(I),
A(T93)=(ASE*YB(1)=~ATE®YPB(1))%W2##2%(~24#2ETA2*W2)/GM(1)
A(T96)=(ASE*YB(] )~ AIE*YPB(I))*WZ**Z*(‘WZ**Z)/GM(1)+
1 Wox#2%RP*YB(1)/GM(1)

A{TeT7)==24%ZETA(L1)Y*WB (1)

A(T98)==WB(1)%%2

A(897)=100

A(942) 2W2XR2% (ASE®YB(2)=AIE*YPB(2) ) *W1%%2/GM(2)

A(993) =W2R%2 % (ASE#YB(2)=AIE®YPB(2) ) %#(=2+#2ZETA2*W2)/GM(2)
A{G24)=W2R%2% (ASE#YB(2)=AIE*YPB(2) )% {=W2%%2)/GM(2) +
1 W2%*2#RP*YB(2)/GM(2)

A(G99)==24*¥2FETA(2)*WB(2)

A(9s10)==~WRB{Z2)¥#%2

A(iCs9)=140
Al(11+2)=W2R%2%{ASE*YB(3)=~AIE*YPB(3))/GM(3)%Wl%#2
A(1193)=W2*42 % (ASEXYB(3)=ATEXYPB(3))/GM(3)#(~24%2ETA2%W2)
A(1194)=W2*X2% (ASE*YB(3)~AlE#YPB(3))/GM(3)%(=W2#%2) +

1 W2%*2%RP*YB(3)/GM(3)

Al11+11)==2.#2ETA(3)*WB(3)

1(11912)==WB(3)#42

A(l12+s11)=140

A{l1392)=W2HR2% (ASEXYB(4)=AIE*YPB(4))/GM(4)RW]%%2
AL13+3)=WRR2%(ASERYB (4 )=AIERYPB(4))/GMI4)R(=24%2ETA2*W2)
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Al1394)=W2R%2%¥(ASE*YB(4)=ATEXRYPB(4))/GM(4 )% (~W2%%2) +
1 W2x*2%#RP*YB(4)/GM(4)

A{13913)=-2.%ZETA(4)*WB(4)

Al13+14)==WB(4)*¥%2

All4s13)=160

ALL THE OTHER ELEMENTS ARE 040
B(1)=1.0

ALL THE OTHER ELEMENTS ARE 040
C(6)=140

C(8)=YPDI(1)

C(10)=YPD(2)

C(12)=YPDI(3)

Clla)=YPD(4)

ALL THE OTHLR ELEMENTS ARE 040
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APPENDIX F

TIME RESPONSE

DIMENSION WB(4)sZETA(4)sGM(4)sYBI4)sYPB{4)sYPD(4),
1 A(16914)sAN(16G+14950)-2(14914)9Cilbr2b)sAT (14014
2 AT(14914)sAIN(14914950, sAANT (14014 )3BD(14)eX(14)
3 X1(14)sCONTRL(2001)

D(Z) UNCOUPLED FROM DISCRETIZED SYSTEM TRANSITION MATRIX
QUANTIZATION EXCLUDED

COMMON/COM1/XP(3,2)
CALL TRAP

STORE INITIAL CONDITIONS ON STATES OF D(2)

DO 666 [=21423
666 XP{(1s1)2040
GC=0eb
10 FORMAT(3(5XsE1548))
11 FORMAT(4(5XsE1548))
50 CONTINUE
READ(5410)C19C2sFC
READ(5910)ASE sAK34RP
READ (5911 )ALCGIAIXXsAIESTIME
READ(5911)WB(1)9s WB(2)9 WB(3)s WRB{4)
READ(591112ETA(1)s ZETA(2)s ZETA(3) s 2ETA(L)
READ(54911)GM(1)9s GM(2)s GCM(3)s CGM(4&)
READ(S5+111YB(1)s YB(2)s YB{3)y YB(4&)
READ(54+11)YPB(1)s YPB(2)y YPR{3)y YPBI(4)
READ(S5911)YPD(1)y YPD(2)s YPD(3)s YPD(4)
DO 9 I=1s4
9 WB(I)=WB(])%2.0%341415927
33 FORMAT({1H1+4Xs10HINPUT DATAs//)
AK3 = AK3%57,29578
PRINT 33
PRINT 10sCleC2sFC
PRINT 10sASEsAK34RP
PRINT 119ALCGAIXX9AIESTIME
PRINT 11y WB(1)s WB(2)s WB(2)y WEB(&)
PRINT 119 ZETA(1)s ZETA(2)s ZETA(3)s 2ETA(4)
PRINT 119 GM(1)s CM(2)s GM(3)s GM(&)
PRINT 11y YB(1)s YB(2)s YB(3)s YB(4)
PRINT 11y YPB(1l)s YPB(2)s YPB(3)s YPBI(4)
PRINT 11» YPD(1)y YPD(2)s YPD(3)s YPD(4)
177 = 50
PRINT 17ITER
17 FORMAT(1H1+2HN=124//)
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PRINT 269 TIME
FORMAT(15X912HFLIGHT TIME=F54191XsTHSECONDSs//)

N IS THE ORDER OF THE SYSTEM A MATRIX
N=1¢4
T IS THE SAMPLING PERIOD
=404
DEFINE ELEMENTS OF A MATRIX

DO 1 I=1sN

DO 1 J=1yN

A{IsJ)=040

Wl=34,448

ZETA1=0e434

W2=84409

ZETA2=0e594

A(lsl)==2.%2ETAL*NW]

A{l92)==W1l%%2

DO 2 I=24Ns2

[1=1=-1

A{lyil)=1.0

A{392)=W]%%2

A(393)==2e%2ETA2*NW2

A(394)=2=W2%%2
A(S592)=(ALCORASEAATE ) RW2%#2% (=1 #5221 /AT XX
A(S593)=(ALCOHASE+ATE ) RW2R %222 , R2ETAZRW2 /AT XX
A(S94)= (ALCORASEH+ATE ) HW2HR2RWIFRD /AIXX + W2XA2%
1 (=C2~AK2®ASE/AIXX)

A(596)==C1

A(Sy B)z ~{FCH¥(ALCC*YPB(1)+YB(1)))/AIXX
A(S910)= ~(FCR(ALCGHYPB(2)4YB(2)))}/AIXX
A(5912) ~(FC*(ALCG*YPE(3)+YR(3)))/AIXX
A(Sslb)= = (FCH(ALCC*YPB(4)+YEB(G))I/ALIXX

A(T792)s(ASE*YB(1)=~ATERYPB(]1) | ¥W2Ru2HW]I#22/5M (]!
AlT93)=(ASE#YB(]1)=~ATEXYPB(1) ) %W2%%2% (-2, %ZETA2#4W2)/GM (1)
AlT794)=(ASE®YB(]1)=ATE¥YPR(]) )*W2HRDK (=2 %%2)/GM(]1)+

1 W2%%2%RP®YB(1)/CM(])

A(TsT)==2.%ZETAL1)*WBI(1)

A(T7+8)==WB(]) %2

A(992)zW2R2% (ASERYB(2)=AIE%YPB(2))*W1#%2/GM(2)
A(992)=W2R%2# (ASERYB(2)~ATERYPB(2) ) # (=2, %ZETA2#W2)/GM(2)
A(9s4)=W2R%2% (ASERYB(2)-ATEXYPR(2) )2 (=W2%%#2)/GM(2) +

1 W2*%2%RP®YB(Z2)/CM(2)

A(999)==2.%ZETA(2)*wB(2)

A(9+10)==WB(2)%%2
Al1192)sW2u%2%(ASE#YE(3)=AIE*YPB(3))/GM(3)#N]1%#2
A(11+3)sW2RR2% (ASE*YB(3)-AIE®YPB(3))/GM(3)%#(~24%ZET22%UW2)
Allls4)=W25#2% (ASE*YB(3)~AIE*YPB(3))/GM(3)%(-w2¥#2) +
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1 W2R%2#RP*YB(3)/GM(3)

A(l11911)==2,%ZETA(3)*WB(3)

Al(11+12)=~WB(3)%%2

Al1392)aW2R%2% (ASEXYB(4)=AIE#YPB(4))/GM(&4)#W]1E2
A(13+3)=W2%*#2% (ASERYB (4 )=ATERYPB(4))/GMIA)#(=2,%2ETA2%W2)
A(1394)aW2uu2%(ASE#YB (4 )=ATERYPEB(4))1/CGM{4)R(=W2*22) +

1 W2n#2#RP*YB(4)/GM(4)

A(13+13)==2.%2ETA(4)*WB(4)

Al(13,14)a=WB(4)nn2

COMPUTE PHI(T)s THE STATE TRANSITION MATRIX
ITER=NUMBER CF TERMS USED IN TAYLOR SERIES EXPANSION
TO CALCULATE PHI(T)

DO 3 I=1yN

DO 3 J=14N
AN(LoJdspl)=A(l ed)%T
BiloJ)mA(I9J)*T
ClloJ)mA(l9J)%T

DO 4 LL=24+]ITER

DO 5 l=14N

DO 5 J=1,N
AlT9J)=2C{TsJ)/FLOATI(LL)
CALL MATMUL{A»BsNsC,

DO 6 I=1,4N

DO 6 J=1yN
AN(T,JoLL)=C(I4J)
CONTINUVE

DO 7 1I=1,yN

DO 7 J=1N

Al(1+J)=0.0

DO 8 I=1,yN

Al(ls1)=2140

DO 12 l=14N

DO 12 J=1sN
AT(I,J)1=Al(1yJ)

DO 15 I=14N

DO 15 JU=1,4N

DO 15 LL=1,ITER
AT(I+J)SAT(I9J)+AN({TsJeLL)
DO 13 I=]N

DO 13 J=lN

PRINT lédoleJsAT(IsJ)
FORMAT(5Xs3HAT(91291He91202H)=E2048)

COMPUTE THE INTEGRAL OF THE STATE TRANSITION MATRIX

DO 18 1=14N

DO 18 J=1,yN
AIN{T9eJsl)=AN(]9Jel ) %T/2,
AL (I9J)2AT(19J)%T
B(loeJ)sAN(TeJel)



a¥aXaNal

[aNals)

NO YA D

18

19

21
20

22

23

24
25

27

28

31

32
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ClloJ)=AIN(TsJs 1)

DO 20 LI=2+ITER

Lit=L]I+1

DO 19 I=1sN

DO 19 J=1sN
A(TeJ)xC(19J)/FLOATI(LIL)
CALL MATMUL(AsBeNsC)

DO 21 I=1sN

DO 21 J=1eN
AIN(ToJdoLIN=C(IsJ)
CONTINUE

DO 22 I=1»sN

DO 22 J=1sN

AANT (1 9J)=AT(1sJ)

DO 23 I=1N

DO 23 J=1N

DO 23 LI=1,ITER
AANT(T9J)=AANT(TsJ)+AIN(T9JeLI)
DO 24 1=1sN

DO 24 J=1sN

PRINT 259e1sJeAANT(1+J)
FORMAT(10X s5HAANT (e 1291Hsel292H)=E20.8)

BD(I)Y IS THE PRODUCT OF THE INTEGRATED PHI(T) MATRIX
AND THE B MATRIX

DO 27 I=1sN
BD(I)1=0.0

DO 28 I=1sN
BD(I)=AANT{I,41)
PRINT 49
FCRMAT(1H1)

DEFINE INITIAL CONDITIONS FOR THE SYSTEM STATES

DO 29 I=1sN
X{1)=0.,0
X(6)=240

DEFINE A DO-LOOP TO UPDATE THE SYSTEM STATES AND
PRINT THE OQUTPUT STATES DESIRED AT EACH
SAMPLING INSTANT

DO 939 M=1,2001

KK=M=~1

TIME=T*FLOAT(KK)

DO 31 I=1sN

X1(I1)=040

DO 32 I=1N

DO 32 K=z=1N

XI(I)=X1(I)+AT(IK)*X(K)
PHID=X(/)+YPD(1)%X(8)+YPD(2)%X(10)+YPD(3)%#X(12)+
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1 YPD(&)®¥X(14)
CSBM=YPD(2)%X(10)
CONTRL (M) = PHID*GC
CALL DIGCOM{CONTRL{M)BETAQ)
PRINT 35¢PHIDsCONTRL (M) sBETACHTIME »CSBM
DC 34 1=1N
34 X1(I)=X1(1)+BD(1)*BETAC
DO 35 I=1sN
36 X(I)=x1(1)
969 CONTINUE
35 FORMAT(1 X95HPHID=E16e8s3Xs 7THBETAIN=E16e893X9s6HBETAC=
TE164893X e THDEGREES s 2X s SHTIME=F 64243 X94HWB2=E1648)
GO TO 50
16 STOP
END
$IBFTC DIGCOM
SUBROUTINE DIGCOM(IUIsYP)
COMMON/COM1/XP(3,42)

AD = 1.0

Al ==24563
A2 = 2444704
A3 ==4877786
B1 =—-2438

B2 = 148860

B3 =—48497576
XP(1ls2)=~BlaXP(1,1)-B2%¥XP(291)-B3%XP(341)+U]
XP{(2+2)=XP(191)

XP(3:2)=XP(2s1)
YP=(A1=AQ%B1)*¥XF(1s1)+(A2-A0%B2)=XP(2s1)

1 +{A3=AQ*E3)%XP(3,1)+UI*AQ

DO 1 I=1»3

1 XP{Isll=Xr{Is2)
RETURN
END

$SIBFTC MATMUL
SUBROUTINE MATMUL(AsBsN»C)
CIMENSION A(NsN)sB(NsN)9sC(NsN)
C CALCULATE C(tIsJ) COEFFICIENTS
o I=1N
20 3 J=1N
Ciled)=0a0
DO 4 K=1sN
Cl{Iad)=CUIsJ)+A(TsKI¥B(KsJ)
CONT IRUE
RETURN
EMND
FIBMAP TRAP
ENTRY TRAFP

2 ()

w B

AXT k¥ gl
AP TRA *x
SYA TRAP=1s4

CLA 8



RESET

ouT

FIX
MES

STA
CLA
TSX
STO
TRA
PLT
TRA
CLA
ARS
LBT
TRA
TRA%*
SXA
TSX
FZE
AXT
ZAC
LRS
TRA#%*
TRA
8C1
END

61

RESET+1
FIX
SGSCCR’Q
8

TRAP~-1

0

* %

0

20

*4 2
RESET+1
QUT»s 4
SQWRIT,4
39 sMES
Eiky 4

35

0

RESET

3y w#x¥& UNDERFLOW



APPENDIX G

QUANTIZATION

SUBROUTINE DIGCOM(AsB)
COMMON/COM1/XP(342)
A0=1.0
Al==2625./10244
A2=425064/1024
A3= —8990/1024.
Bl==2437./1024,
B2=+1931./1024.

B3= ~5104/1024,
UI=1023.%A/15,
AX=1,
EX=10234/AX
CALL ROUND(UIsERRy2X9BX)
uUpP=y1
XP(1s2)=—B1%XP(1+1)-B2%XP{2,1)~-B3%XP(3+1)+UP
XP(2+2)=XP(1s1)
XP(3,2)=XP(2s1)
AX=2.
BX=65535+/AX
CALL ROUND(XP(1+2)sERRsAXsBX)
YP=(A1-AQO*B1)%XP(191)< A2=A0%B2)%XP(21)

1 +(A3=A0*B3}*XP(3s1)+uP
CALL ROUND(YPSERRAXBX)
DO 1 I=143

1 XP(I+1)=XP(1+2)
B=YP%15,/1023.
RETURN
END

$IBFTC ROUND

SUBROUTINE ROUND{AsBsAN»BN)
X=ABS(A)
S=A/X

IX=X*AN
XQ=1x
XQ=XQ/AN
IF{XQ=BN) 19292

1 A=5#XQ
B=S#({X=-XQ)
RETURN

2 A=S#BN
B=S®({X=BN)
RETURN
END
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s vinsamn
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POT

POT

POT

POT

POT

POT

POT

POT

POT
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44

54
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48
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13

21

39

56
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23
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59

28

33

36

]

.69600000

.84100000

.80800000

.53364475

.14304518

.81778992
.23348752
.00617283
.00680993
.53883234
.63535570
.45470157
.639376%
.83810153
.01000000
.01000000
.02443500
.03585529

.05784000

APPENDIX H

POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT
POT

POT
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04
08
45
43
15
49
17
58
19
46
05
16
22
2
60
35
40
34

37

POTENTIOMETER SETTINGS

[}

.69600000
.84100000
. 23800000
.29632090
.06064000
44804253
.01440000
.00383412
.03532000
.36664618
.63535570
45470157
.63937694
.83810153
.01000000
.01000000
.10000000
.05996379

.00920473
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